Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ann Bot ; 131(4): 655-666, 2023 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-36694346

RESUMO

BACKGROUND AND AIMS: Polyploidization can improve plant mass yield for bioenergy support, yet few studies have investigated ozone (O3) sensitivity linked to internal regulatory mechanisms at different ploidy levels. METHODS: Diploid and triploid Populus tomentosa plants were exposed to ambient and ambient plus 60 ppb [O3]. We explored their differences in sensitivity (leaf morphological, physiological and biochemical traits, and plant mass) as well as mechanisms of avoidance (stomatal conductance, xanthophyll cycle, thermal dissipation) and tolerance (ROS scavenging system) in response to O3 at two developmental phases. KEY RESULTS: Triploid plants had the highest plant growth under ambient O3, even under O3 fumigation. However, triploid plants were the most sensitive to O3 and under elevated O3 showed the largest decreases in photosynthetic capacity and performance, as well as increased shoot:root ratio, and the highest lipid peroxidation. Thus, plant mass production could be impacted in triploid plants under long-term O3 contamination. Both diploid and triploid plants reduced stomatal aperture in response to O3, thereby reducing O3 entrance, yet only in diploid plants was reduced stomatal aperture associated with minimal (non-significant) damage to photosynthetic pigments and lower lipid peroxidation. CONCLUSIONS: Tolerance mechanisms of plants of both ploidy levels mainly focused on the enzymatic reduction of hydrogen peroxide through catalase and peroxidase, yet these homeostatic regulatory mechanisms were higher in diploid plants. Our study recommends triploid white poplar as a bioenergy species only under short-term O3 contamination. Under continuously elevated O3 over the long term, diploid white poplar may perform better.


Assuntos
Ozônio , Populus , Ozônio/farmacologia , Populus/genética , Triploidia , Fotossíntese/fisiologia , Folhas de Planta/genética , Ploidias
2.
Physiol Plant ; 173(3): 1105-1119, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34287917

RESUMO

Freezing stress is a critical environmental factor affecting survival, distribution, and evolution of plants. Although there is evidence that nitrogen (N) affects frost tolerance of juvenile conifers, the magnitude and direction of such effect can diverge among species. The influence of the N source on frost tolerance has been barely studied. Particularly, how organic N sources could affect the cold acclimation dynamics of seedlings is poorly understood. We studied morpho-physiological responses to organic N supply (amino acids) in comparison to inorganic N in seedlings of two Mediterranean pine species: Pinus halepensis and P. sylvestris. Fertilization was applied at low and high N doses (30 and 130 mg N seedling-1 ) in the first growing season. Then, tolerance of seedlings to freezing stress was evaluated through the cold season. This study confirmed that organic N supply promotes growth of both species as effectively as inorganic N sources. At low N availability, seedlings had acute phosphorus deficiencies when grown with inorganic N, but not with organic N. Likewise, high organic-N availability improved chlorophylls concentration. Both species increased their frost tolerance through time, especially during late autumn. Although organic N supply did not show clear benefits on frost tolerance, it seemed to enhance cold acclimation via increases of compatible solutes, such as soluble sugars and proline, particularly in P. halepensis. Thus, the effects of organic N supply could depend on the extent that such osmolytes contribute to the dormancy strategy of the species. Other species-specific mechanisms to cope with freezing stress are further discussed.


Assuntos
Pinus , Plântula , Aclimatação , Congelamento , Nitrogênio
3.
J Exp Bot ; 72(20): 7180-7190, 2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34228101

RESUMO

The ability of plants to acquire soil nitrogen (N) sources is plastic in response to abiotic and biotic factors. However, information about how plant preferences among N forms changes in response to internal plant N demand through growth phases, or to environmental stress such as ozone (O3), is scarce. Diploid and triploid Chinese white poplar were used to investigate N form preferences at two key developmental periods (spring, summer) and in response to summer O3 (ambient, 60 ppb above ambient). We used stable isotopes to quantify NH4+, NO3- and glycine N-uptake rates. Carbon acquisition was recorded simultaneously. Both ploidy levels differed in growth, N form preferences, and N and C use strategies. Diploid white poplars grew faster in spring but slower in summer compared with triploids. Diploid white poplars also showed plasticity among N form preferences through the season, with no preferences in spring, and NO3- preferred in summer, while triploids showed an overall preference for NO3-. Carbon acquisition and NO3- uptake were inhibited in both ploidy levels of poplar at elevated O3, which also reduced diploid total N uptake. However, triploid white poplars alleviated N uptake reduction, switching to similar preferences among N forms. We conclude that N form preferences by white poplar are driven by internal C and N use in response to nutrient demands, and external factors such as O3.


Assuntos
Ozônio , Populus , Carbono , Diploide , Nitrogênio , Folhas de Planta , Populus/genética , Estações do Ano , Triploidia
4.
Tree Physiol ; 40(9): 1165-1177, 2020 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-32333785

RESUMO

Drought is a limiting factor to forest regeneration and restoration, which is likely to increase in intensity and duration under future climates. Nitrogen (N) nutrition is related to drought-resistance mechanisms in trees. However, the influence of chemical N form (inorganic and organic N) on physiological traits related to drought resistance has been sparsely studied in conifer seedlings. We investigated the effect of N forms on morpho-physiological traits of Pinus ponderosa Dougl. ex Laws. seedlings and subsequent influences in drought tolerance and acclimation. One-year-old seedlings were fertilized during 10 weeks at 9 mM N with different N forms [either NH4+, NO3- or organic N (amino acids mixture)] in their second year of growth. After fertilization, we measured traits associated with intrinsic drought tolerance (shoot water relations, osmotic regulation, photosynthesis and cell membrane stability). Seedlings were then subjected to an 8-week drought period at varying drought intensities to evaluate plant acclimation mechanisms. We demonstrated that P. ponderosa seedlings could efficiently use amino acids as a primary N source, showing similar performance to those grown with inorganic N forms. Nitrogen form influenced mainly drought-acclimation mechanisms rather than intrinsic drought tolerance. Osmotic potential at saturation (Ψπsat) was marginally affected by N form, and a significant relationship between proline concentration in needles and Ψπsat was found. During acclimation, seedlings fertilized with organic N minimized needle senescence, retained more nutrients in the oldest needles, had maximum increments in proline concentration and hastened the development of water-use efficiency mechanisms compared with those fertilized with inorganic N sources. Our results suggest an improved physiological drought acclimation of organic N-fertilized seedlings.


Assuntos
Pinus ponderosa , Plântula , Aclimatação , Secas , Nitrogênio
5.
Ann Bot ; 115(6): 1001-13, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25817313

RESUMO

BACKGROUND AND AIMS: The carbon (C) and nitrogen (N) needed for plant growth can come either from soil N and current photosynthesis or through remobilization of stored resources. The contribution of remobilization to new organ growth on a whole-plant basis is quite well known in deciduous woody plants and evergreen conifers, but this information is very limited in broadleaf evergreen trees. This study compares the contribution of remobilized C and N to the construction of new organs in spring, and assesses the importance of different organs as C and N sources in 1-year-old potted seedlings of four ecologically distinct evergreen Mediterranean trees, namely Quercus ilex, Q. coccifera, Olea europaea and Pinus hapelensis. METHODS: Dual (13)C and (15)N isotope labelling was used to unravel the contribution of currently taken up and stored C and N to new growth. Stored C was labelled under simulated winter conditions. Soil N was labelled with the fertilization during the spring growth. KEY RESULTS: Oaks allocated most C assimilated under simulated winter conditions to coarse roots, while O. europaea and P. halepensis allocated it to the leaves. Remobilization was the main N source (>74 %) for new fine-root growth in early spring, but by mid-spring soil supplied most of the N required for new growth (>64 %). Current photosynthesis supplied >60 % of the C in new fine roots by mid-spring in most species. Across species, the proportion of remobilized C and N in new shoots increased with the relative growth rate. Quercus species, the slowest growing trees, primarily used currently acquired resources, while P. halepensis, the fastest growing species, mainly used reserves. Increases in the amount of stored N increased N remobilization, which fostered absolute growth both within and across species. Old leaves were major sources of remobilized C and N, but stems and roots also supplied considerable amounts of both in all species except in P. halepensis, which mainly relied on foliage formed in the previous growing season to supply stored resources. CONCLUSIONS: Seedlings of Mediterranean evergreen trees have distinct C and N storage physiologies, with relative growth rate driving the contribution of remobilized resources to new growth. These differences may reduce competition and facilitate species coexistence.


Assuntos
Plântula/crescimento & desenvolvimento , Árvores/crescimento & desenvolvimento , Biomassa , Carbono/metabolismo , Isótopos de Carbono , Região do Mediterrâneo , Nitrogênio/metabolismo , Especificidade de Órgãos , Estações do Ano , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...